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Abstract

This note reports an experimental study of the fluid damping of a long slender cylinder, fixed at both ends (no

rotation and displacement), in a cross air-flow. The structural dynamic strain was measured in the lift direction over a

range of reduced velocity Ur using a fibre-optic Bragg grating sensor. An auto-regressive moving average technique was

used to deduce the effective damping ratios (including structural and fluid damping) from the strain data. The modal

damping ratios corresponding to the first-, second- and third-mode vibrations over a range of Ur from 3 to 45 have been

characterized and discussed. The results show that the value of fluid damping varied significantly at resonance when the

vortex-shedding frequency coincides with one of the natural frequencies of the combined fluid–structure system.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Damping models the energy dissipation of a system during vibration and plays an important role in the stability of a

structure and its vibration amplitude. Its knowledge is essential if the dynamic behaviour of a structure in a cross-flow

were to be understood thoroughly. Damping may arise from fluid surrounding the structure as well as from the

structure. While structural damping is related to the properties of the structure, fluid damping originates from skin

friction and fluid drag, i.e., the result of viscous shearing of the fluid at the surface of the structure and flow separation.

As a result, fluid damping is motion dependent and is difficult to estimate (Weaver and Fitzpatrick, 1988; Granger et al.,

1993).

Using an auto-regressive moving average (ARMA) technique, Zhou et al. (2000) and So et al. (2001) deduced the

fluid damping ratios from the structural displacement time series obtained from a numerical simulation of an elastic

cylinder in a cross-flow. The damping ratios thus deduced showed a trend quite similar to the experimental

measurements of Griffin and Koopmann (1977). In comparison with the simulation data, signals obtained from

experiments are usually ‘noisier’. Thus, whether the ARMA technique is equally applicable for the analysis of

experimental data remains to be verified. Furthermore, the mass ratio considered in the study of Zhou et al. (2000) is

relatively small. For the case of a cylinder in air-flow, the mass ratio is much larger. How would this difference in mass

ratio affect the fluid damping? The present work aims to study experimentally the effective damping ratio, including

structural damping and fluid damping, of a long slender cylinder in a cross air-flow. The effective damping ratios of the

first three modes were deduced from the measured signals using the ARMA technique. The results are discussed in

detail, including the variation of the damping ratio over a relatively large range of reduced velocity Ur and its behaviour

at resonance and off-resonance.
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The ARMA modelling technique is based on the observation that the sampled response of a multi-degree-of-freedom

system satisfies a linear recurrence relation (Mignolet and Red-Horse, 1994; Jadic et al., 1998). Consequently, ARMA

modelling is not limited to single-mode behaviour; it identifies all modal characteristics present in the responses

including possible outside dynamics, such as turbulence in the incoming flow. Furthermore, the estimation of the

ARMA parameters accounts for the presence of modelling noise so that its effect on the computed damping ratios is

significantly reduced. Finally, ARMA models have been shown (Jadic et al., 1998) to capture some nonlinear effects

through the modelling of the higher harmonics content present in the response. These advantages of ARMA modelling

far outweigh the increase in computational effort required to obtain reliable estimates of the damping ratios.

Granger (1990) developed a digital signal processing method for modal analysis of fluid–structure systems. This

method is a multi-degree-of-freedom time domain method based on a development in the field of time-series analysis.

The method was used to deduce fluid damping from the strain data of a cylinder placed in a square in-line tube bundle

(Granger et al., 1993). Since their test cylinder, which was mounted on flexible support, was rigid, their system is

different from that of a flexible cylinder on fixed supports as considered in this note. The formulation of Granger (1990)

is in fact a specific ARMA model. However, there are some differences between his and the present formulation. For

example, Granger (1990) used the same operator for auto-regressive (AR) and moving average (MA), as evident in

Eq. (4), while the present technique has unequal operators for AR and MA and seeks the nonlinear maximum-

likelihood solution. Granger further computed the ARMA coefficients Ak; Bk and Ck (in Eq. (2)) based on the auto-

correlation of the measured signal, i.e., the ARMAmodel is applied on the correlation and then the noise term w is truly

a noise. On the other hand, the present approach works directly with the measured signal. One benefit of this approach

is that w denotes any measurement noise plus a fictitious random source that creates the randomness in the response

and can physically be associated with the origin of the turbulence in the signal.

In this work, the experiment was carried out in a wind tunnel using a cylinder with a small diameter (dE6mm) over

Ur range of 3–45 (Re ¼ 800� 11 000). Thus, the mass ratio, i.e., the cylinder mass over the virtual mass of the fluid, is

large compared to that of a liquid–structure system. Within this velocity and mass ratio range and due to the smallness

of d; the amplitude of vibration is expected to be very small. A Polytec Series 3000 Dual Laser Beam Vibrometer was

used to measure the transverse bending displacement Y at the mid-span of the cylinder. The root mean square (r.m.s.)

displacement, Yr:m:s:=d ; was estimated to be about 0.01. An optical FBG sensor was developed to measure the strain, e;
in a vibrating cylinder fixed at both ends (Zhou et al., 1999; Jin et al., 2000). The FBG sensor was located at mid-span of

the cylinder. Since the sensor grating has a finite length of about 10mm, the measurement represents the average strain

over this length. The measured strain due to lift was consistent with the transverse displacement obtained using a laser

Nomenclature

d diameter of circular cylinder (mm)

Ea spectra of fluctuations a
f frequency in spectrum analysis (Hz)

fs average vortex shedding frequency (Hz)
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00
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nd

x; y; z coordinates in streamwise, transverse and spanwise directions, respectively

Y cross-flow bending displacement measured at mid-span of the cylinder by laser vibrometer (mm)
Yr:m:s: root mean square value of Y (mm)
e dynamic strains measured by fibre Bragg grating (FBG) sensors (me)
er.m.s. root mean square values of e(me)
z damping ratio
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s measured structural damping ratio
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00
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e effective first-, second- and third-mode damping ratios
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0

f fluid damping ratio

n fluid kinematic viscosity
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vibrometer; an empirical correlation between them was established in Zhou et al. (1999), where measurements were

conducted under the same experimental conditions. When Uro27; the relation between eY ;r:m:s: and Yr:m:s: is

approximately linear. As the third-mode resonance, where the frequency of vortex shedding, fs; coincides with the third-
mode natural frequency of the fluid–cylinder system, occurs near UrE27; eY ;r:m:s: increases faster and the eY ;r:m:s:2Yr:m:s:

relation starts to deviate from linearity. This deviation is not surprising. At a higher mode of vibration, Y experiences a

faster spanwise variation for given amplitude. Consequently, e; a second derivative of Y with respect to the spanwise

variation, will increase faster than the displacement. The empirical correlation between eY ;r:m:s: and Yr:m:s: implies that

the measured strain may provide identical information on displacement for Uro27: Caution has to be taken to deduce

information on displacement from the strain data at the occurrence of the third-mode resonance. One good point about

the FBG measured strain is its reliability, reproducibility and the ease with which the technique works. It is also

virtually nonintrusive much like the laser vibrometer technique. In view of this, the various parameters of fluid–cylinder

interaction could be deduced with confidence. The present study is justified on this basis, namely, to make use of the

FBG sensor to examine the physics of damping in a fix-supported cylinder vibrating in a cross-flow. This is why the

study can be carried out in spite of the small vibration amplitudes of the cylinder.

In still air, the damping ratio (includes material damping and frictional losses at the supports as well as still air

damping) has been determined from a plucking test and the result is z
0

sE0:032: The first-mode natural frequency in still
air has also been measured and has a value of 94Hz. Thus, the second- and third-mode natural frequencies may be

estimated to be 259 and 508Hz, respectively (e.g., Zhou et al., 2001).

2. Results and discussion

The dependence of r.m.s. strain, er:m:s:; on Ur is shown in Fig. 1. Peaks in er:m:s: are discernible at UrE5; 11 and 27.

They can be identified from the spectral analysis with resonance occurring when the vortex shedding frequency is equal

to the first-, second- and third-mode natural frequencies, f
0

n ; f
00

n and f
000

n ; respectively. The peaks at UrE5 and 11 are very

weak, probably because the flow excitation energy at these Ur are relatively small. The peak at UrE27 is most

prominent.

The dominant vibration modes can be identified from the spectral analysis of the signals, as calculated using the

ARMA technique. Fig. 2 presents the power spectra Ee of e at Ur ¼ 27 where the third-mode resonance occurs. The

peak at f � ¼ fd=UN ¼ 0:016 (an asterisk denotes normalization by UN and d) in Fig. 2 has been experimentally verified

to be the same as a wind tunnel natural vibration frequency. It is evident that the first three cylinder vibration modes

play an important role. The following discussion will focus on the three modes of cylinder vibration and their relation

with each other for the Ur range investigated.

The effective damping ratios, z
0

e; z
00

e and z
000

e ; are presented in Fig. 3. The number of points used for the ARMA

estimation could have a significant impact on the result. In the present calculation, 120 000 data points were used, which

was found to be sufficient to produce converged damping ratios. In the use of the ARMA technique, a model of a

higher order provides in general a better fit to the original time series. However, a higher-order model demands more

computing time. In the process of analysing numerical simulation data, Zhou et al. (2000) found that an order of 70 was
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Fig. 1. Variation of er:m:s: with Ur:
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sufficient. Experimental data is ‘noisier’ than numerical simulation data. In the present investigation, consistent results

were achieved when an order of 190 was chosen. Note that the large value of the AR order is partly necessitated by the

nonlinearity of the fluid–structure system, which implies the presence in the response of a large number of harmonics of

the shedding frequency. These frequencies are genuine characteristics of the response and are automatically included in

the ARMA model. The data exhibit scattering, as one would expect. Curves in Fig. 3, obtained by applying a seventh-

order polynomial fit to the data points for different Ur ranges, indicate the trend only. The value of z
0

e fluctuates about

0.04, larger than z
0

s; except near resonance.
At UrE5; where the first-mode resonance occurs, the first-mode effective damping ratio z

0

e drops below the structural

damping z
0

s and approaches zero, implying a negative fluid damping ratio z
0

f : The second- and third-mode damping

ratios, z
00

e and z
000

e ; display a trough at UrE11 and 27 where fs synchronizes with f
00

n and f
000

n ; respectively. Interestingly, z
0

e

approaches a peak value around UrE11 and 27, while z
000

e continues to rise at UrE5: It seems that when one effective

modal damping ratio dives because of synchronization, the others tend to rise. In general, the effective modal damping

in the second and third modes is less than that of the first mode, viz. z
000

e ; z
00

eoz
0

e: The present result is consistent with
Blevins’ (1975) observation that the structural damping corresponding to the third-mode vibration was lower than that

of the first mode, even for this case of small fluid damping. This result could partially account for the relatively large

vibration observed at UrE27:
For a quasi-steady vibration, the energy loss from a structure should be balanced by the energy imparted to the

structure by the surrounding moving fluid. At the third-mode resonance, the vibration amplitude is relatively large, as

inferred from er:m:s: (Fig. 1). The effective modal damping ratio corresponding to the third-mode resonance displays its

minimum, 0.01. On the other hand, at this value of Ur (27) the ratios corresponding to the first and second modes show

peaks at about 0.06 and 0.028, respectively. Evidently at Ur ¼ 27; the flow transfers most of its energy to the cylinder
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Fig. 2. Power spectra Ee of e; (Re ¼ 6400 or Ur ¼ 27).
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through the third-mode motion. However, Fig. 2 shows that significant motions are also induced in the first and second

modes, which are not in phase with the dominant third-mode motion. Note that, since er:m:s: is approximately linearly

correlated with Yr:m:s: for Uro27 but increases faster than Y at the occurrence of the third-mode resonance, the

difference between the first- (or second-) and third-mode displacements may not be so great as the er:m:s: variation

(Fig. 1) suggests. As the effective modal damping in flowing fluid is likely to be vibration amplitude dependent, this

could account for the local maxima in the effective damping of the first and second modes during the third-mode

resonance. Similar arguments are also applicable for resonance occurring at other modes.
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